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Abstract. Using a contraction procedure, we construct a twist operator that satisfies a shifted
cocycle condition, and leads to the Jordanian quasi-Hopf Uh;y(sl(2)) algebra. The corresponding
universal Rh(y) matrix obeys a Gervais–Neveu–Felder equation associated with the Uh;y(sl(2))
algebra. For a class of representations, the dynamical Yang–Baxter equation may be expressed as
a compatibility condition for the algebra of the Lax operators.

Recently a class of invertible maps between the classical sl(2) and the non-standard Jordanian
Uh(sl(2)) algebras has been obtained [1–3]. The classical and the Jordanian coalgebraic
structures may be related [2–5] by the twist operators corresponding to these maps. Following
the first twist leading from the classical to the Jordanian Hopf structure, it is possible to envisage
a second twist leading to a quasi-Hopf quantization of the Jordanian Uh(sl(2)) algebra. By
explicitly constructing the appropriate universal twist operator that satisfies a shifted cocycle
condition, we here obtain the Gervais–Neveu–Felder (GNF) equation satisfied by the universal
R matrix of a one-parametric quasi-Hopf deformation of the Uh(sl(2)) algebra.

The GNF equation corresponding to the standard Drinfeld–Jimbo deformed Uq(sl(2))
algebra was studied in the context of Liouville field theory [6], quantization of the Kniznik–
Zamolodchikov–Bernard equation [7] and quantization of the Calogero–Moser model in the
R matrix formalism [8]. The general construction of the twist operators leading to the
GNF equation corresponding to the quasi-triangular standard Drinfeld–Jimbo deformedUq(g)
algebras and superalgebras was obtained in [9–12].

For the sake of completeness, we start by enlisting the general properties of a quasi-Hopf
algebra A [13]. For all a ∈ A there exists an invertible element � ∈ A ⊗ A ⊗ A and the
elements (α, β) ∈ A, such that

(id ⊗ �)� (a) = �(� ⊗ id)(�(a))�−1

(id ⊗ id ⊗ �)(�)(� ⊗ id ⊗ id)(�) = (1 ⊗�)(id ⊗ � ⊗ id)(�)(�⊗ 1)

(ε ⊗ id) ◦ � = id

(id ⊗ ε) ◦ � = id∑
r

S(a(1)r )αa
(2)
r = ε(a)α (1)
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r

a(1)r βS(a
(2)
r ) = ε(a)β

∑
r

X(1)r βS(X
(2)
r )αX

(3)
r = 1

∑
r

S(X̄(1)r )αX̄
(2)
r βS(X̄

(3)
r ) = 1

where

�(a) =
∑
r

a(1)r ⊗ a(2)r � =
∑
r

X(1)r ⊗X(2)r ⊗X(3)r

�−1 =
∑
r

X̄(1)r ⊗ X̄(2)r ⊗ X̄(3)r .
(2)

A quasi-triangular quasi-Hopf algebra is equipped with a universal R matrix satisfying

�op(a) = R � (a)R−1

(id ⊗ �)(R) = �−1
231R13�213R12�

−1
123

(� ⊗ id)(R) = �312R13�
−1
132R23�123.

(3)

The algebra is known as triangular if the additional relation

R21 = R−1 (4)

is satisfied. In a quasi-triangular quasi-Hopf algebra, the universal R matrix satisfies the
quasi-Yang–Baxter equation

R12�312R13�
−1
132R23�123 = �321R23�

−1
231R13�213R12. (5)

An invertible twist operator F ∈ A ⊗ A satisfying the relation

(ε ⊗ id)(F) = 1 = (id ⊗ ε)(F) (6)

performs a gauge transformation as follows:

�F (a) = F � (a)F−1

�F = F23(id ⊗ �)(F)�(� ⊗ id)(F−1)F−1
12

αF =
∑
r

S(f̄ (1)r )αf̄ (2)r

βF =
∑
r

f (1)r βS(f (2)r )

RF = F21RF−1

(7)

where

F =
∑
r

f (1)r ⊗ f (2)r F−1 =
∑
r

f̄ (1)r ⊗ f̄ (2)r . (8)

The Jordanian Hopf algebraUh(sl(2)) is generated by the elements (T ±1(= e±hX), Y,H),
satisfying the algebraic relations [14]

[H, T ±1] = T ±2 − 1 [H, Y ] = − 1
2 (Y (T + T −1) + (T + T −1)Y ) [X, Y ] = H

(9)

whereas the coalgebraic properties are given by [14]

�(T ±1) = T ±1 ⊗ T ±1 � (Y ) = Y ⊗ T + T −1 ⊗ Y

�(H) = H ⊗ T + T −1 ⊗H

ε(T ±1) = 1 ε(Y ) = ε(H) = 0
S(T ±1) = T ∓1 S(Y ) = −T YT −1 S(H) = −THT −1.

(10)
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The universal Rh matrix of the triangular Hopf algebra Uh(sl(2)) is given in a convenient
form [15] by

Rh = exp(−hX ⊗ TH) exp(hTH ⊗X). (11)

An invertible nonlinear map of the generating elements of theUh(sl(2)) algebra on the elements
of the classical U(sl(2)) algebra plays a pivotal role in the present work. The map reads [2]

T = T̃ Y = J− − 1
4h

2J+(J
2
0 − 1) H = (1 + (hJ+)

2)
1/2
J0 (12)

where T̃ = hJ+ + (1 + (hJ+)
2)

1/2
. The elements (J±, J0) are the generators of the classical

sl(2) algebra

[J0, J±] = ±2J± [J+, J−] = J0. (13)

The twist operator specific to the map (12), transforming the trivial classicalU(sl(2)) coproduct
structure to the non-cocommuting coproduct properties (10) of the JordanianUh(sl(2)) algebra,
has been obtained [3,4] as a series expansion in powers ofh. The transforming operator between
the two above-mentioned antipode maps has been obtained [4] in a closed form.

Our present derivation of the GNF equation corresponding to the Jordanian Uh(sl(2))
algebra closely parallels the description in [8]. These authors obtained the solutions of the
GNF equation in the case of the standard Drinfeld–Jimbo deformed quasi-Hopf Uq;x(sl(2))
algebra by constructing the universal twist operator depending on a parameter x:

F(x) =
∞∑
k=0

(−1)k
(q − q−1)k

[k]q!
x2kqk(k+1)/2

[ k∏
l=1

(1 ⊗ 1 − x2q2l1 ⊗ q2J0)
−1
]

×q k
2 J0J k

+ ⊗ q
3k
2 J0J k

− (14)

where [n]q = (qn − q−n)/(q − q−1). The generators of the Uq(sl(2)) algebra satisfy [13] the
relations

qJ0J±q−J0 = q±2J± [J+,J−] = [J0]q . (15)

A key ingredient in our method is the contraction technique developed in [2], where a
matrix G

G = Eq(ηJ+)⊗ Eq(ηJ+) η = h

q − 1
(16)

performs a similarity transformation on the universal Rq matrix of the Uq(sl(2)) algebra [13].
The twisted exponential Eq(χ) reads

Eq(χ) =
∞∑
n=0

χn

[n]q!
. (17)

The transforming matrix G is singular in the q → 1 limit. The transformed Rj1;j2
h matrix for

an arbitrary (j1; j2) represention

R
j1;j2
h = lim

q→1
[G−1Rj1;j2

q G] (18)

is, however, nonsingular and coincides, on account of the map (12), with the result obtained
directly from the expression (11) of the universal Rh matrix. In the above contraction process
the following two identities play a crucial role:

(E(ηJ+))
−1qαJ0/2E(ηJ+) = T(α)qαJ0/2

(E(ηJ+))
−1J−E(ηJ+) = − η

q − q−1
(T(1)qJ0 − T(−1)q

−J0) + J−
(19)



4614 A Chakrabarti and R Chakrabarti

where T(α) = (E(ηJ+))
−1E(qαηJ+). In the q → 1 limit, it may be proved [2]

lim
q→1

T(α) = T̃ α = T α. (20)

The second equality in (20) follows from the map (12).
Using the contraction scheme discussed above we now obtain a one-parametric twist

operator Fh(y) ∈ Uh(sl(2))⊗Uh(sl(2)), which satisfies a shifted cocycle condition. The twist
operator Fh(y) gauge transforms à la (7) the Jordanian Hopf algebraUh(sl(2)) to a quasi-Hopf
Uh;y(sl(2)) algebra and the transformed universal Rh(y) matrix satisfies the corresponding
GNF equation. To this end we first compute

F̃(y) = lim
q→1

(G−1F(x)G)x2=y(q−1) (21)

where F(x) is given by (14). A new feature here is the reparametrization described by

y = x2

q − 1
(22)

which is necessary for obtaining a nonsingular result in the q → 1 limit. In (22) we assume
that x → 0 in the q → 1 limit in such a way that y remains finite. Following the above
procedure in the said limit we obtain

F̃(y) =
∞∑
k=0

(hy)k

k!
(T̃ J+)

k ⊗ (T̃ 3(T̃ − T̃ −1))
k
. (23)

The rhs of (23) is interpreted on account of the map (12) as an element ofUh(sl(2))⊗Uh(sl(2)).
Identifying this in the above sense with the twist operator Fh(y)(=F̃(y)) we now obtain the
crucial result

Fh(y) = exp
(y

2
(1 − T 2)⊗ (T 2 − T 4)

)
. (24)

The above twist operator Fh(y) satisfies the property (6). Following the arguments in [8] we
express Fh(y) as a shifted coboundary

Fh(y) = �(M(y))(1 ⊗ M−1(y))(M−1(yT 4
(2))⊗ 1) (25)

where the expression for the boundary reads

M(y) = exp
(y

2
(1 − T 2)

)
. (26)

The operator Fh(y) given by (24) satisfies the following shifted cocycle condition:

(1 ⊗ Fh(y))[(id ⊗ �)Fh(y)] = (Fh(yT 4
(3))⊗ 1)[(� ⊗ id)Fh(y)]. (27)

Following (7) the transformed coproduct property may now be read as

�y(a) = Fh(y)� (a)F−1
h (y) for all a ∈ Uh;y(sl(2)). (28)

It may now be shown that the shifted cocycle condition is a consequence of the following
shifted coassociativity property:

(id ⊗ �y) ◦ �y(a) = (�yT 4
(3)

⊗ id) ◦ �y(a). (29)

Following (7) the gauge-transformed universal Rh(y)matrix for the Jordanian quasi-Hopf
Uh;y(sl(2)) algebra reads

Rh(y) = Fh21(y)RhF−1
h (y). (30)
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The coassociator �(y) corresponding to the Jordanian quasi-Hopf Uh;y(sl(2)) algebra may
be obtained for the above construction of the twist operator obeying the shifted cocycle
condition (27). Using (7), (24) and (27) we obtain

�(y) = Fh12(yT
4
(3))F−1

h12(y)

= exp
[
−y

2
(1 − T 2)⊗ (T 2 − T 4)⊗ (1 − T 4)

]
. (31)

The elements α(y) and β(y), characterizing the antipode map of the Uh;y(sl(2)) algebra, may
be similarly obtained from (7), (10) and (24):

α(y) = exp
[y

2
(1 − T 2)

2
]

β(y) = exp
[
−y

2
(1 − T −2)

2
]
. (32)

Using the gauge transformation property of the universal R matrix in (7) and our
construction (24) of the twist operator, we now discuss the GNF equation associated with
the Jordanian quasi-Hopf Uh;y(sl(2)) algebra. The relations (7), (24) and (31) lead to the
transformation property

Rh12(yT
4
(3)) = �213(y)Rh12(y)�

−1
123(y). (33)

Now the quasitriangularity property of the Uh;y(sl(2)) algebra implies via (3), (31) and (33)
the following relations:

(id ⊗ �y)Rh(y) = Fh23(y)F−1
h23(yT

4
(1))Rh13(y)Rh12(yT

4
(3))

(�y ⊗ id)Rh(y) = Rh13(yT
4
(2))Rh23(y)Fh12(yT

4
(3))F−1

h12(y).
(34)

Using the transformation property (33) we may now recast the quasi-Yang–Baxter equation (5)
as the GNF equation associated with the Jordanian quasi-Hopf Uh;y(sl(2)) algebra:

Rh12(y)Rh13(yT
4
(2))Rh23(y) = Rh23(yT

4
(1))Rh13(y)Rh12(yT

4
(3)). (35)

We now briefly consider the solutions of the above GNF equation (35). Using the universal
Rh(y) matrix (30), the twist operator Fh(y) in (24) and the map (12) of the generators of the
Uh(sl(2)) algebra on the corresponding classical elements, we may construct solutions of the
GNF equation (35). As illustrations we describe the representations Rh(y) for the 1

2 ⊗ j and
the 1 ⊗ j cases. A (2j + 1)-dimensional representation of the classical sl(2) algebra (13)

J+|jm〉 = (j −m)(j +m + 1)|jm + 1〉 J−|jm〉 = |jm− 1〉
J0|jm〉 = m|jm〉 (36)

now, via the map (12), immediately furnishes the corresponding (2j + 1)-dimensional
representation of the Uh(sl(2)) algebra (9). For the j = 1

2 case, the generators remain
undeformed. For the j = 1 case, we list the representation of Uh(sl(2)) below.

(j = 1)

X =
( 0 2 0

0 0 2
0 0 0

)
Y =


 0 1

2h
2 0

1 0 − 3
2h

2

0 1 0




H =
( 2 0 −4h2

0 0 0
0 0 −2

)
.

(37)

Using the above representations in the expression (30) of the universal Rh(y)matrix, we obtain

R
1
2 ;j
h (y) =

(
T −hH + 1

2h(T − T −1)(1 + 2y(1 − T 4))

0 T −1

)
(38)
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and

R
1;j
h (y) =

(
T 2 A B

0 1 C

0 0 T −2

)
(39)

where

A = −2hTH − 2hy(1 − T 2)(1 − T 4)

B = −2h2[T 2 − T −2 − 2TH(1 − T −2)− (T H)2T −2]
−4h2y(1 − T 2)(1 + 4T −2 − T 4)

−4h2yTH(1 − T 2)(T 2 − T −2) + 2h2y2(T − T −1)
2
(1 − T 4)

2

C = −2h(1 − T −2 + THT −2) + 2hy(1 − T 2)(T 2 − T −2).

(40)

From (38) it follows that the R
1
2 ; 1

2
h matrix for the fundamental ( 1

2 ; 1
2 ) case does not depend

on the parameter y. The Rh(y) matrices for the higher representations, however, nontrivially
depend on y. The Rh(y) matrices satisfy an ‘exchange symmetry’ between the two sectors of
the tensor product spaces:

(R
j1;j2
h (y))km,ln = (R

j2;j1
−h (y))mk,nl . (41)

In the remaining part of the present work we recast the Jordanian GNF equation (35)
as a compatibility condition for the algebra of L operators. Using a new parametrization
y = exp(z), we perform a translation

Rh12(z) → Rh12(z− 2hX(3)) (42)

to express (35) in a symmetric form

Rh12(z− 2hX(3))Rh13(z + 2hX(2))Rh23(z− 2hX(1))

= Rh23(z + 2hX(1))Rh13(z− 2hX(2))Rh12(z + 2hX(3)). (43)

This is equivalent to the Jordanian GNF equation (35) for the class of representations *j1;j2

satisfying the property

*j1;j2([(X(k) +X(l))∂z,Rhkl(z)]) = 0. (44)

Adopting the procedure in [8] we here use the following construction of the Lax operator for
the Uh;y(sl(2)) algebra:

L13(z) = exp[−2h(2X(1) +X(3))∂z]Rh13(z) exp[2hX(3)∂z] (45)

where the subscript 3 denotes the quantum space. For the representations satisfying (44),
relation (43) may be expressed in a Lax matrix form

R
j1;j2
h12 (z− 2hX(3))L13(z)L23(z) = L23(z)L13(z)R

j1;j2
h12 (z + 2hX(3)). (46)

As illustrations we note that the representationsR
1
2 ;1
h (z),R

1; 1
2

h (z) andR1;1
h (z)obtained from (38)

and (39) satisfy the requirement (44).
To summarize, here we have constructed the Jordanian quasi-Hopf Uh;y(sl(2)) algebra

by explicitly obtaining the relevant twist operator via a contraction method. In the contraction
method used here we start with the standard Drinfeld–Jimbo deformed quasi-HopfUq;x(sl(2))
algebra and use a suitable similarity transformation followed by a q → 1 limiting process. In
contrast to our earlier works [2–4] relating to the contraction mechanism, a distinctive point
here is that the reparametrization as obtained in (22) is essential for obtaining a nonsingular
twist operator for the Uh;y(sl(2)) algebra in the q → 1 limit. Our contraction method has an
advantage in that it furnishes the dynamical quantities for the Jordanian quasi-HopfUh;y(sl(2))
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algebra from the corresponding quantities of the standard Drinfeld–Jimbo deformed quasi-
Hopf Uq;x(sl(2)) algebra. The present twist operator associated with the Uh;y(sl(2)) algebra
satisfies a shifted cocycle condition. The universal Rh(y) matrix satisfies the GNF equation
associated with the Uh;y(sl(2)) algebra. For a special class of representations, the GNF
equation may be recast as a compatibility condition of the L operators. As an extension of the
present work, a similar formalism may be developed to describe a quasi-Hopf quantization of
the coloured Jordanian deformed gl(2) algebra considered in [4,16,17]. A similar construction
of the twist operator associated with the quasi-Hopf deformation of an arbitrary Jordanian
slh(N) algebra may also be attempted following the discussion in [2].

Lastly we comment on the possible applications of the quasi-Hopf Uh;y(sl(2)) algebra
discussed here. Using the representations of the coalgebra and the Casimir operator for
the Jordanian deformation of the sl(2) algebra, a nonstandard integrable deformation of
the XXX hyperbolic Gaudin system has been recently obtained [18]. The Jordanian quasi-
Hopf Uh;y(sl(2)) algebra obtained here may be similarly used to obtain a new one-parametric
family of exactly integrable Hamiltonians using the transformed coalgebraic structure (28).
Finally, the dual of a quasi-Hopf algebra is evidently something that is associative only up
to conjugation in a suitable convolution algebra by a 3-cocycle �. Our work on the quasi-
Hopf Uh;y(sl(2)) algebra may lead to a nonassociative generalization of the noncommutative
differential geometry of the h-deformed quantum space studied in [19].
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