The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf $U_{h ; y}(s /(2))$ algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 334611
(http://iopscience.iop.org/0305-4470/33/25/304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:24

Please note that terms and conditions apply.

The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf $\boldsymbol{U}_{h ; y}(s l(2))$ algebra

A Chakrabarti \dagger and R Chakrabarti \ddagger
\dagger Centre de Physique Théorique§, Ecole Polytechnique, 91128 Palaiseau Cédex, France
\ddagger Department of Theoretical Physics, University of Madras, Guindy Campus, Madras 600 025, India
E-mail: chakra@cpht.polytechnique.fr

Received 16 November 2000

Abstract

Using a contraction procedure, we construct a twist operator that satisfies a shifted cocycle condition, and leads to the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$ algebra. The corresponding universal $\mathcal{R}_{h}(y)$ matrix obeys a Gervais-Neveu-Felder equation associated with the $U_{h ; y}(s l(2))$ algebra. For a class of representations, the dynamical Yang-Baxter equation may be expressed as a compatibility condition for the algebra of the Lax operators.

Recently a class of invertible maps between the classical $s l(2)$ and the non-standard Jordanian $U_{h}(s l(2))$ algebras has been obtained [1-3]. The classical and the Jordanian coalgebraic structures may be related [2-5] by the twist operators corresponding to these maps. Following the first twist leading from the classical to the Jordanian Hopf structure, it is possible to envisage a second twist leading to a quasi-Hopf quantization of the Jordanian $U_{h}(s l(2))$ algebra. By explicitly constructing the appropriate universal twist operator that satisfies a shifted cocycle condition, we here obtain the Gervais-Neveu-Felder (GNF) equation satisfied by the universal \mathcal{R} matrix of a one-parametric quasi-Hopf deformation of the $U_{h}(s l(2))$ algebra.

The GNF equation corresponding to the standard Drinfeld-Jimbo deformed $U_{q}(s l(2))$ algebra was studied in the context of Liouville field theory [6], quantization of the Kniznik-Zamolodchikov-Bernard equation [7] and quantization of the Calogero-Moser model in the R matrix formalism [8]. The general construction of the twist operators leading to the GNF equation corresponding to the quasi-triangular standard Drinfeld-Jimbo deformed $U_{q}(\mathrm{~g})$ algebras and superalgebras was obtained in [9-12].

For the sake of completeness, we start by enlisting the general properties of a quasi-Hopf algebra \mathcal{A} [13]. For all $a \in \mathcal{A}$ there exists an invertible element $\Phi \in \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$ and the elements $(\alpha, \beta) \in \mathcal{A}$, such that

$$
\begin{align*}
& (\mathrm{id} \otimes \Delta) \Delta(a)=\Phi(\Delta \otimes \mathrm{id})(\Delta(a)) \Phi^{-1} \\
& (\mathrm{id} \otimes \mathrm{id} \otimes \Delta)(\Phi)(\Delta \otimes \mathrm{id} \otimes \mathrm{id})(\Phi)=(1 \otimes \Phi)(\mathrm{id} \otimes \Delta \otimes \mathrm{id})(\Phi)(\Phi \otimes 1) \\
& (\varepsilon \otimes \mathrm{id}) \circ \Delta=\mathrm{id} \\
& (\mathrm{id} \otimes \varepsilon) \circ \Delta=\mathrm{id} \\
& \sum_{r} S\left(a_{r}^{(1)}\right) \alpha a_{r}^{(2)}=\varepsilon(a) \alpha \tag{1}
\end{align*}
$$

[^0]\[

$$
\begin{aligned}
& \sum_{r} a_{r}^{(1)} \beta S\left(a_{r}^{(2)}\right)=\varepsilon(a) \beta \\
& \sum_{r} X_{r}^{(1)} \beta S\left(X_{r}^{(2)}\right) \alpha X_{r}^{(3)}=1 \\
& \sum_{r} S\left(\bar{X}_{r}^{(1)}\right) \alpha \bar{X}_{r}^{(2)} \beta S\left(\bar{X}_{r}^{(3)}\right)=1
\end{aligned}
$$
\]

where

$$
\begin{align*}
& \Delta(a)=\sum_{r} a_{r}^{(1)} \otimes a_{r}^{(2)} \quad \Phi=\sum_{r} X_{r}^{(1)} \otimes X_{r}^{(2)} \otimes X_{r}^{(3)} \\
& \Phi^{-1}=\sum_{r} \bar{X}_{r}^{(1)} \otimes \bar{X}_{r}^{(2)} \otimes \bar{X}_{r}^{(3)} . \tag{2}
\end{align*}
$$

A quasi-triangular quasi-Hopf algebra is equipped with a universal \mathcal{R} matrix satisfying

$$
\begin{align*}
& \Delta^{o p}(a)=\mathcal{R} \Delta(a) \mathcal{R}^{-1} \\
& (\mathrm{id} \otimes \Delta)(\mathcal{R})=\Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12} \Phi_{123}^{-1} \tag{3}\\
& (\Delta \otimes \mathrm{id})(\mathcal{R})=\Phi_{312} \mathcal{R}_{13} \Phi_{132}^{-1} \mathcal{R}_{23} \Phi_{123}
\end{align*}
$$

The algebra is known as triangular if the additional relation

$$
\begin{equation*}
\mathcal{R}_{21}=\mathcal{R}^{-1} \tag{4}
\end{equation*}
$$

is satisfied. In a quasi-triangular quasi-Hopf algebra, the universal \mathcal{R} matrix satisfies the quasi-Yang-Baxter equation

$$
\begin{equation*}
\mathcal{R}_{12} \Phi_{312} \mathcal{R}_{13} \Phi_{132}^{-1} \mathcal{R}_{23} \Phi_{123}=\Phi_{321} \mathcal{R}_{23} \Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12} \tag{5}
\end{equation*}
$$

An invertible twist operator $\mathcal{F} \in \mathcal{A} \otimes \mathcal{A}$ satisfying the relation

$$
\begin{equation*}
(\varepsilon \otimes \mathrm{id})(\mathcal{F})=1=(\mathrm{id} \otimes \varepsilon)(\mathcal{F}) \tag{6}
\end{equation*}
$$

performs a gauge transformation as follows:

$$
\begin{align*}
& \Delta_{\mathcal{F}}(a)=\mathcal{F} \Delta(a) \mathcal{F}^{-1} \\
& \Phi_{\mathcal{F}}=\mathcal{F}_{23}(\mathrm{id} \otimes \Delta)(\mathcal{F}) \Phi(\Delta \otimes \mathrm{id})\left(\mathcal{F}^{-1}\right) \mathcal{F}_{12}^{-1} \\
& \alpha_{\mathcal{F}}=\sum_{r} S\left(\bar{f}_{r}^{(1)}\right) \alpha \bar{f}_{r}^{(2)} \tag{7}\\
& \beta_{\mathcal{F}}=\sum_{r} f_{r}^{(1)} \beta S\left(f_{r}^{(2)}\right) \\
& \mathcal{R}_{\mathcal{F}}=\mathcal{F}_{21} \mathcal{R} \mathcal{F}^{-1}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{F}=\sum_{r} f_{r}^{(1)} \otimes f_{r}^{(2)} \quad \mathcal{F}^{-1}=\sum_{r} \bar{f}_{r}^{(1)} \otimes \bar{f}_{r}^{(2)} \tag{8}
\end{equation*}
$$

The Jordanian Hopf algebra $U_{h}(s l(2))$ is generated by the elements $\left(T^{ \pm 1}\left(=\mathrm{e}^{ \pm h X}\right), Y, H\right)$, satisfying the algebraic relations [14]
$\left[H, T^{ \pm 1}\right]=T^{ \pm 2}-1$
$[H, Y]=-\frac{1}{2}\left(Y\left(T+T^{-1}\right)+\left(T+T^{-1}\right) Y\right)$
$[X, Y]=H$
whereas the coalgebraic properties are given by [14]

$$
\begin{align*}
& \Delta\left(T^{ \pm 1}\right)=T^{ \pm 1} \otimes T^{ \pm 1} \quad \Delta(Y)=Y \otimes T+T^{-1} \otimes Y \\
& \Delta(H)=H \otimes T+T^{-1} \otimes H \\
& \varepsilon\left(T^{ \pm 1}\right)=1 \quad \varepsilon(Y)=\varepsilon(H)=0 \tag{10}\\
& S\left(T^{ \pm 1}\right)=T^{\mp 1} \quad S(Y)=-T Y T^{-1} \quad S(H)=-T H T^{-1} .
\end{align*}
$$

The universal \mathcal{R}_{h} matrix of the triangular Hopf algebra $U_{h}(s l(2))$ is given in a convenient form [15] by

$$
\begin{equation*}
\mathcal{R}_{h}=\exp (-h X \otimes T H) \exp (h T H \otimes X) . \tag{11}
\end{equation*}
$$

An invertible nonlinear map of the generating elements of the $U_{h}(s l(2))$ algebra on the elements of the classical $U(s l(2))$ algebra plays a pivotal role in the present work. The map reads [2]

$$
\begin{equation*}
T=\tilde{T} \quad Y=J_{-}-\frac{1}{4} h^{2} J_{+}\left(J_{0}^{2}-1\right) \quad H=\left(1+\left(h J_{+}\right)^{2}\right)^{1 / 2} J_{0} \tag{12}
\end{equation*}
$$

where $\tilde{T}=h J_{+}+\left(1+\left(h J_{+}\right)^{2}\right)^{1 / 2}$. The elements $\left(J_{ \pm}, J_{0}\right)$ are the generators of the classical $s l(2)$ algebra

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm 2 J_{ \pm} \quad\left[J_{+}, J_{-}\right]=J_{0} \tag{13}
\end{equation*}
$$

The twist operator specific to the map (12), transforming the trivial classical $U(s l(2))$ coproduct structure to the non-cocommuting coproduct properties (10) of the Jordanian $U_{h}(s l(2))$ algebra, has been obtained $[3,4]$ as a series expansion in powers of h. The transforming operator between the two above-mentioned antipode maps has been obtained [4] in a closed form.

Our present derivation of the GNF equation corresponding to the Jordanian $U_{h}(s l(2))$ algebra closely parallels the description in [8]. These authors obtained the solutions of the GNF equation in the case of the standard Drinfeld-Jimbo deformed quasi-Hopf $U_{q ; x}(s l(2))$ algebra by constructing the universal twist operator depending on a parameter x :

$$
\begin{align*}
\mathcal{F}(x)=\sum_{k=0}^{\infty}(& -1)^{k} \frac{\left(q-q^{-1}\right)^{k}}{[k]_{q}!} x^{2 k} q^{k(k+1) / 2}\left[\prod_{l=1}^{k}\left(1 \otimes 1-x^{2} q^{2 l} 1 \otimes q^{2 \mathcal{J}_{0}}\right)^{-1}\right] \\
& \times q^{\frac{k}{2} \mathcal{J}_{0}} \mathcal{J}_{+}^{k} \otimes q^{\frac{3 k}{2} \mathcal{J}_{0}} \mathcal{J}_{-}^{k} \tag{14}
\end{align*}
$$

where $[n]_{q}=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$. The generators of the $U_{q}(s l(2))$ algebra satisfy [13] the relations

$$
\begin{equation*}
q^{\mathcal{J}_{0}} \mathcal{J}_{ \pm} q^{-\mathcal{J}_{0}}=q^{ \pm 2} \mathcal{J}_{ \pm} \quad\left[\mathcal{J}_{+}, \mathcal{J}_{-}\right]=\left[\mathcal{J}_{0}\right]_{q} . \tag{15}
\end{equation*}
$$

A key ingredient in our method is the contraction technique developed in [2], where a matrix G

$$
\begin{equation*}
G=E_{q}\left(\eta \mathcal{J}_{+}\right) \otimes E_{q}\left(\eta \mathcal{J}_{+}\right) \quad \eta=\frac{h}{q-1} \tag{16}
\end{equation*}
$$

performs a similarity transformation on the universal \mathcal{R}_{q} matrix of the $U_{q}(s l(2))$ algebra [13]. The twisted exponential $E_{q}(\chi)$ reads

$$
\begin{equation*}
E_{q}(\chi)=\sum_{n=0}^{\infty} \frac{\chi^{n}}{[n]_{q}!} \tag{17}
\end{equation*}
$$

The transforming matrix G is singular in the $q \rightarrow 1$ limit. The transformed $R_{h}^{j_{1} ; j_{2}}$ matrix for an arbitrary $\left(j_{1} ; j_{2}\right)$ represention

$$
\begin{equation*}
R_{h}^{j_{1} ; j_{2}}=\lim _{q \rightarrow 1}\left[G^{-1} R_{q}^{j_{1} ; j_{2}} G\right] \tag{18}
\end{equation*}
$$

is, however, nonsingular and coincides, on account of the map (12), with the result obtained directly from the expression (11) of the universal \mathcal{R}_{h} matrix. In the above contraction process the following two identities play a crucial role:

$$
\begin{align*}
& \left(E\left(\eta \mathcal{J}_{+}\right)\right)^{-1} q^{\alpha \mathcal{J}_{0} / 2} E\left(\eta \mathcal{J}_{+}\right)=\mathcal{T}_{(\alpha)} q^{\alpha \mathcal{J}_{0} / 2} \\
& \left(E\left(\eta \mathcal{J}_{+}\right)\right)^{-1} \mathcal{J}_{-} E\left(\eta \mathcal{J}_{+}\right)=-\frac{\eta}{q-q^{-1}}\left(\mathcal{T}_{(1)} q^{\mathcal{J}_{0}}-\mathcal{T}_{(-1)} q^{-\mathcal{J}_{0}}\right)+\mathcal{J}_{-} \tag{19}
\end{align*}
$$

where $\mathcal{T}_{(\alpha)}=\left(E\left(\eta \mathcal{J}_{+}\right)\right)^{-1} E\left(q^{\alpha} \eta \mathcal{J}_{+}\right)$. In the $q \rightarrow 1$ limit, it may be proved [2]

$$
\begin{equation*}
\lim _{q \rightarrow 1} \mathcal{T}_{(\alpha)}=\tilde{T}^{\alpha}=T^{\alpha} \tag{20}
\end{equation*}
$$

The second equality in (20) follows from the map (12).
Using the contraction scheme discussed above we now obtain a one-parametric twist operator $\mathcal{F}_{h}(y) \in U_{h}(s l(2)) \otimes U_{h}(s l(2))$, which satisfies a shifted cocycle condition. The twist operator $\mathcal{F}_{h}(y)$ gauge transforms à la (7) the Jordanian Hopf algebra $U_{h}(s l(2))$ to a quasi-Hopf $U_{h ; y}(s l(2))$ algebra and the transformed universal $\mathcal{R}_{h}(y)$ matrix satisfies the corresponding GNF equation. To this end we first compute

$$
\begin{equation*}
\tilde{\mathcal{F}}(y)=\lim _{q \rightarrow 1}\left(G^{-1} \mathcal{F}(x) G\right)_{x^{2}=y(q-1)} \tag{21}
\end{equation*}
$$

where $\mathcal{F}(x)$ is given by (14). A new feature here is the reparametrization described by

$$
\begin{equation*}
y=\frac{x^{2}}{q-1} \tag{22}
\end{equation*}
$$

which is necessary for obtaining a nonsingular result in the $q \rightarrow 1$ limit. In (22) we assume that $x \rightarrow 0$ in the $q \rightarrow 1$ limit in such a way that y remains finite. Following the above procedure in the said limit we obtain

$$
\begin{equation*}
\tilde{\mathcal{F}}(y)=\sum_{k=0}^{\infty} \frac{(h y)^{k}}{k!}\left(\tilde{T} J_{+}\right)^{k} \otimes\left(\tilde{T}^{3}\left(\tilde{T}-\tilde{T}^{-1}\right)\right)^{k} \tag{23}
\end{equation*}
$$

The rhs of (23) is interpreted on account of the map (12) as an element of $U_{h}(s l(2)) \otimes U_{h}(s l(2))$. Identifying this in the above sense with the twist operator $\mathcal{F}_{h}(y)(=\tilde{\mathcal{F}}(y))$ we now obtain the crucial result

$$
\begin{equation*}
\mathcal{F}_{h}(y)=\exp \left(\frac{y}{2}\left(1-T^{2}\right) \otimes\left(T^{2}-T^{4}\right)\right) . \tag{24}
\end{equation*}
$$

The above twist operator $\mathcal{F}_{h}(y)$ satisfies the property (6). Following the arguments in [8] we express $\mathcal{F}_{h}(y)$ as a shifted coboundary

$$
\begin{equation*}
\mathcal{F}_{h}(y)=\Delta(\mathcal{M}(y))\left(1 \otimes \mathcal{M}^{-1}(y)\right)\left(\mathcal{M}^{-1}\left(y T_{(2)}^{4}\right) \otimes 1\right) \tag{25}
\end{equation*}
$$

where the expression for the boundary reads

$$
\begin{equation*}
\mathcal{M}(y)=\exp \left(\frac{y}{2}\left(1-T^{2}\right)\right) . \tag{26}
\end{equation*}
$$

The operator $\mathcal{F}_{h}(y)$ given by (24) satisfies the following shifted cocycle condition:

$$
\begin{equation*}
\left(1 \otimes \mathcal{F}_{h}(y)\right)\left[(\mathrm{id} \otimes \Delta) \mathcal{F}_{h}(y)\right]=\left(\mathcal{F}_{h}\left(y T_{(3)}^{4}\right) \otimes 1\right)\left[(\Delta \otimes \mathrm{id}) \mathcal{F}_{h}(y)\right] \tag{27}
\end{equation*}
$$

Following (7) the transformed coproduct property may now be read as

$$
\begin{equation*}
\Delta_{y}(a)=\mathcal{F}_{h}(y) \Delta(a) \mathcal{F}_{h}^{-1}(y) \quad \text { for all } \quad a \in U_{h ; y}(s l(2)) \tag{28}
\end{equation*}
$$

It may now be shown that the shifted cocycle condition is a consequence of the following shifted coassociativity property:

$$
\begin{equation*}
\left(\mathrm{id} \otimes \Delta_{y}\right) \circ \Delta_{y}(a)=\left(\Delta_{y T_{(3)}^{4}} \otimes \mathrm{id}\right) \circ \Delta_{y}(a) . \tag{29}
\end{equation*}
$$

Following (7) the gauge-transformed universal $\mathcal{R}_{h}(y)$ matrix for the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$ algebra reads

$$
\begin{equation*}
\mathcal{R}_{h}(y)=\mathcal{F}_{h 21}(y) \mathcal{R}_{h} \mathcal{F}_{h}^{-1}(y) . \tag{30}
\end{equation*}
$$

The coassociator $\Phi(y)$ corresponding to the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$ algebra may be obtained for the above construction of the twist operator obeying the shifted cocycle condition (27). Using (7), (24) and (27) we obtain

$$
\begin{align*}
\Phi(y) & =\mathcal{F}_{h 12}\left(y T_{(3)}^{4}\right) \mathcal{F}_{h 12}^{-1}(y) \\
& =\exp \left[-\frac{y}{2}\left(1-T^{2}\right) \otimes\left(T^{2}-T^{4}\right) \otimes\left(1-T^{4}\right)\right] . \tag{31}
\end{align*}
$$

The elements $\alpha(y)$ and $\beta(y)$, characterizing the antipode map of the $U_{h ; y}(s l(2))$ algebra, may be similarly obtained from (7), (10) and (24):

$$
\begin{equation*}
\alpha(y)=\exp \left[\frac{y}{2}\left(1-T^{2}\right)^{2}\right] \quad \beta(y)=\exp \left[-\frac{y}{2}\left(1-T^{-2}\right)^{2}\right] \tag{32}
\end{equation*}
$$

Using the gauge transformation property of the universal \mathcal{R} matrix in (7) and our construction (24) of the twist operator, we now discuss the GNF equation associated with the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$ algebra. The relations (7), (24) and (31) lead to the transformation property

$$
\begin{equation*}
\mathcal{R}_{h 12}\left(y T_{(3)}^{4}\right)=\Phi_{213}(y) \mathcal{R}_{h 12}(y) \Phi_{123}^{-1}(y) . \tag{33}
\end{equation*}
$$

Now the quasitriangularity property of the $U_{h ; y}(s l(2))$ algebra implies via (3), (31) and (33) the following relations:

$$
\begin{align*}
& \left(\mathrm{id} \otimes \Delta_{y}\right) \mathcal{R}_{h}(y)=\mathcal{F}_{h 23}(y) \mathcal{F}_{h 23}^{-1}\left(y T_{(1)}^{4}\right) \mathcal{R}_{h 13}(y) \mathcal{R}_{h 12}\left(y T_{(3)}^{4}\right) \tag{34}\\
& \left(\Delta_{y} \otimes \mathrm{id}\right) \mathcal{R}_{h}(y)=\mathcal{R}_{h 13}\left(y T_{(2)}^{4}\right) \mathcal{R}_{h 23}(y) \mathcal{F}_{h 12}\left(y T_{(3)}^{4}\right) \mathcal{F}_{h 12}^{-1}(y) .
\end{align*}
$$

Using the transformation property (33) we may now recast the quasi-Yang-Baxter equation (5) as the GNF equation associated with the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$ algebra:

$$
\begin{equation*}
\mathcal{R}_{h 12}(y) \mathcal{R}_{h 13}\left(y T_{(2)}^{4}\right) \mathcal{R}_{h 23}(y)=\mathcal{R}_{h 23}\left(y T_{(1)}^{4}\right) \mathcal{R}_{h 13}(y) \mathcal{R}_{h 12}\left(y T_{(3)}^{4}\right) \tag{35}
\end{equation*}
$$

We now briefly consider the solutions of the above GNF equation (35). Using the universal $\mathcal{R}_{h}(y)$ matrix (30), the twist operator $\mathcal{F}_{h}(y)$ in (24) and the map (12) of the generators of the $U_{h}(s l(2))$ algebra on the corresponding classical elements, we may construct solutions of the GNF equation (35). As illustrations we describe the representations $R_{h}(y)$ for the $\frac{1}{2} \otimes j$ and the $1 \otimes j$ cases. A $(2 j+1)$-dimensional representation of the classical $s l(2)$ algebra (13)

$$
\begin{align*}
J_{+}|j m\rangle & =(j-m)(j+m+1)|j m+1\rangle & J_{-}|j m\rangle=|j m-1\rangle \tag{36}\\
J_{0}|j m\rangle & =m|j m\rangle &
\end{align*}
$$

now, via the map (12), immediately furnishes the corresponding $(2 j+1)$-dimensional representation of the $U_{h}(s l(2))$ algebra (9). For the $j=\frac{1}{2}$ case, the generators remain undeformed. For the $j=1$ case, we list the representation of $U_{h}(s l(2))$ below.

$$
\begin{align*}
& (j=1) \\
& X=\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \quad Y=\left(\begin{array}{ccc}
0 & \frac{1}{2} h^{2} & 0 \\
1 & 0 & -\frac{3}{2} h^{2} \\
0 & 1 & 0
\end{array}\right) \tag{37}\\
& H=\left(\begin{array}{ccc}
2 & 0 & -4 h^{2} \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{align*}
$$

Using the above representations in the expression (30) of the universal $\mathcal{R}_{h}(y)$ matrix, we obtain

$$
R_{h}^{\frac{1}{2} ; j}(y)=\left(\begin{array}{cc}
T & -h H+\frac{1}{2} h\left(T-T^{-1}\right)\left(1+2 y\left(1-T^{4}\right)\right) \tag{38}\\
0 & T^{-1}
\end{array}\right)
$$

and

$$
R_{h}^{1 ; j}(y)=\left(\begin{array}{ccc}
T^{2} & A & B \tag{39}\\
0 & 1 & C \\
0 & 0 & T^{-2}
\end{array}\right)
$$

where

$$
\begin{align*}
A= & -2 h T H-2 h y\left(1-T^{2}\right)\left(1-T^{4}\right) \\
B=-2 h^{2}\left[T^{2}-\right. & \left.T^{-2}-2 T H\left(1-T^{-2}\right)-(T H)^{2} T^{-2}\right] \\
& \quad 4 h^{2} y\left(1-T^{2}\right)\left(1+4 T^{-2}-T^{4}\right) \tag{40}\\
& -4 h^{2} y T H\left(1-T^{2}\right)\left(T^{2}-T^{-2}\right)+2 h^{2} y^{2}\left(T-T^{-1}\right)^{2}\left(1-T^{4}\right)^{2} \\
C= & -2 h\left(1-T^{-2}+T H T^{-2}\right)+2 h y\left(1-T^{2}\right)\left(T^{2}-T^{-2}\right) .
\end{align*}
$$

From (38) it follows that the $R_{h}^{\frac{1}{2} ; \frac{1}{2}}$ matrix for the fundamental $\left(\frac{1}{2} ; \frac{1}{2}\right)$ case does not depend on the parameter y. The $R_{h}(y)$ matrices for the higher representations, however, nontrivially depend on y. The $R_{h}(y)$ matrices satisfy an 'exchange symmetry' between the two sectors of the tensor product spaces:

$$
\begin{equation*}
\left(R_{h}^{j_{1} ; j_{2}}(y)\right)_{k m, l n}=\left(R_{-h}^{j_{2} ; j_{1}}(y)\right)_{m k, n l} . \tag{41}
\end{equation*}
$$

In the remaining part of the present work we recast the Jordanian GNF equation (35) as a compatibility condition for the algebra of L operators. Using a new parametrization $y=\exp (z)$, we perform a translation

$$
\begin{equation*}
\mathcal{R}_{h 12}(z) \rightarrow \mathcal{R}_{h 12}\left(z-2 h X_{(3)}\right) \tag{42}
\end{equation*}
$$

to express (35) in a symmetric form

$$
\begin{align*}
& \mathcal{R}_{h 12}\left(z-2 h X_{(3)}\right) \mathcal{R}_{h 13}\left(z+2 h X_{(2)}\right) \mathcal{R}_{h 23}\left(z-2 h X_{(1)}\right) \\
& \quad=\mathcal{R}_{h 23}\left(z+2 h X_{(1)}\right) \mathcal{R}_{h 13}\left(z-2 h X_{(2)}\right) \mathcal{R}_{h 12}\left(z+2 h X_{(3)}\right) . \tag{43}
\end{align*}
$$

This is equivalent to the Jordanian GNF equation (35) for the class of representations $\varrho_{j_{1} ; j_{2}}$ satisfying the property

$$
\begin{equation*}
\varrho_{j_{1} ; j_{2}}\left(\left[\left(X_{(k)}+X_{(l)}\right) \partial_{z}, \mathcal{R}_{h k l}(z)\right]\right)=0 . \tag{44}
\end{equation*}
$$

Adopting the procedure in [8] we here use the following construction of the Lax operator for the $U_{h ; y}(s l(2))$ algebra:

$$
\begin{equation*}
L_{13}(z)=\exp \left[-2 h\left(2 X_{(1)}+X_{(3)}\right) \partial_{z}\right] \mathcal{R}_{h 13}(z) \exp \left[2 h X_{(3)} \partial_{z}\right] \tag{45}
\end{equation*}
$$

where the subscript 3 denotes the quantum space. For the representations satisfying (44), relation (43) may be expressed in a Lax matrix form

$$
\begin{equation*}
R_{h 12}^{j_{1} ; j_{2}}\left(z-2 h X_{(3)}\right) L_{13}(z) L_{23}(z)=L_{23}(z) L_{13}(z) R_{h 12}^{j_{1} ; j_{2}}\left(z+2 h X_{(3)}\right) . \tag{46}
\end{equation*}
$$

As illustrations we note that the representations $R_{h}^{\frac{1}{2} ; 1}(z), R_{h}^{1 ; \frac{1}{2}}(z)$ and $R_{h}^{1 ; 1}(z)$ obtained from (38) and (39) satisfy the requirement (44).

To summarize, here we have constructed the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$ algebra by explicitly obtaining the relevant twist operator via a contraction method. In the contraction method used here we start with the standard Drinfeld-Jimbo deformed quasi-Hopf $U_{q ; x}(s l(2))$ algebra and use a suitable similarity transformation followed by a $q \rightarrow 1$ limiting process. In contrast to our earlier works [2-4] relating to the contraction mechanism, a distinctive point here is that the reparametrization as obtained in (22) is essential for obtaining a nonsingular twist operator for the $U_{h ; y}(s l(2))$ algebra in the $q \rightarrow 1$ limit. Our contraction method has an advantage in that it furnishes the dynamical quantities for the Jordanian quasi-Hopf $U_{h ; y}(s l(2))$
algebra from the corresponding quantities of the standard Drinfeld-Jimbo deformed quasiHopf $U_{q ; x}(s l(2))$ algebra. The present twist operator associated with the $U_{h ; y}(s l(2))$ algebra satisfies a shifted cocycle condition. The universal $\mathcal{R}_{h}(y)$ matrix satisfies the GNF equation associated with the $U_{h ; y}(s l(2))$ algebra. For a special class of representations, the GNF equation may be recast as a compatibility condition of the L operators. As an extension of the present work, a similar formalism may be developed to describe a quasi-Hopf quantization of the coloured Jordanian deformed $g l(2)$ algebra considered in [4,16,17]. A similar construction of the twist operator associated with the quasi-Hopf deformation of an arbitrary Jordanian $s l_{h}(N)$ algebra may also be attempted following the discussion in [2].

Lastly we comment on the possible applications of the quasi-Hopf $U_{h ; y}(s l(2))$ algebra discussed here. Using the representations of the coalgebra and the Casimir operator for the Jordanian deformation of the $s l(2)$ algebra, a nonstandard integrable deformation of the $X X X$ hyperbolic Gaudin system has been recently obtained [18]. The Jordanian quasiHopf $U_{h ; y}(s l(2))$ algebra obtained here may be similarly used to obtain a new one-parametric family of exactly integrable Hamiltonians using the transformed coalgebraic structure (28). Finally, the dual of a quasi-Hopf algebra is evidently something that is associative only up to conjugation in a suitable convolution algebra by a 3-cocycle Φ. Our work on the quasiHopf $U_{h ; y}(s l(2))$ algebra may lead to a nonassociative generalization of the noncommutative differential geometry of the h-deformed quantum space studied in [19].

Acknowledgment

One of us (RC) wishes to thank A J Bracken for a kind invitation to the University of Queensland, where part of this work was done.

References

[1] Abdesselam B, Chakrabarti A and Chakrabarti R 1996 Mod. Phys. Lett. A 112883
[2] Abdesselam B, Chakrabarti A and Chakrabarti R 1998 Mod. Phys. Lett. A 13779
[3] Abdesselam B, Chakrabarti A, Chakrabarti R and Segar J 1999 Mod. Phys. Lett. A 14765
[4] Chakrabarti R and Quesne C 1999 Int. J. Mod. Phys. A 142511
[5] Kulish P P, Lyakhovsky V D and Mudrov A I 1999 J. Math. Phys. 404569
[6] Gervais J L and Neveu A 1984 Nucl. Phys. 238125
[7] Felder G 1994 Elliptic Quantum Groups: Proc. ICMP (Paris)
[8] Babelon O, Bernard D and Billey E 1996 Phys. Lett. B 37589
[9] Fronsdal C 1997 Lett. Math. Phys. 40117
[10] Jimbo M, Konno H, Odake S and Shiraishi J 1997 Quasi-Hopf twistors for elliptic quantum groups Preprint q-alg/9712029
[11] Arnaudon D, Buffenoir E, Ragoucy E and Roche Ph 1998 Lett. Math. Phys. 44 201-14
(Arnaudon D, Buffenoir E, Ragoucy E and Roche Ph 1997 Universal solutions of quantum dynamical YangBaxter equations Preprint q -alg/9712037)
[12] Zhang Y Z and Gould M D 1999 J. Math. Phys. 405264
[13] Kassel C 1995 Quantum Groups (Berlin: Springer)
[14] Ohn Ch 1992 Lett. Math. Phys. 2585
[15] Ballesteros A and Herranz F J 1996 J. Phys. A: Math. Gen. 29 L311
[16] Quesne C 1997 J. Math. Phys. 386018
[17] Parashar P 1998 Lett. Math. Phys. 45105
[18] Ballesteros A and Herranz F J 1999 J. Phys. A: Math. Gen. 328851
[19] Cho S, Madore J and Park K S 1998 J. Phys. A: Math. Gen. 312639

[^0]: § Laboratoire Propre du CNRS UPR A 0014.

